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A generalized law of mixtures 
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The mechanical properties of two-phase composites are predicted using a rigorous continuum 
mechanics analysis and an equivalent microstructural transformation approach. This leads to 
a generalized law of mixtures which is contrasted with the classical linear law of mixtures which 
requires some explicit assumptions. The generalized law of mixtures enables prediction of a variety 
of mechanical properties of a two-phase composite with any volume fraction, grain shape and 
phase distribution. It is shown that the classical linear law of mixtures is a specific case of the 
generalized law of mixtures. Examples are given from continuous Cu-W composites, the 
particulate Co-WC system, AI/SiCp composites, ~-~ Ti-Mn alloys and ~-13 Cu-Zn alloys for the 
predictions of properties such as Young's modulus, yield strengths, f low stresses, the overall 
friction stresses and the overall HalI-Petch coefficients. It is shown that the theoretical predictions 
by the generalized law of mixtures are in very good agreement with the corresponding 
experimental results drawn from the literature, for both continuous fibre composites and 
particulate reinforced systems. 

1. I n t r o d u c t i o n  
The term "law of mixtures" refers normally to the 
expression of the mechanical properties of a phase 
mixture in terms of the bulk or in situ mechanical 
properties and the relative amounts of its constituent 
phases. In other words, the mechanical properties of 
a phase mixture are expressed in terms of the relative 
contributions of the constituent phases. 

The law of mixtures was first proposed by Voight 
[1] to predict the mechanical properties of a com- 
posite in terms of the bulk mechanical properties of its 
constituent phases. This form of the law of mixtures is 
often called the classical linear law of mixtures. The 
latter has the following forms for the flow stress and 
the total strain of a composite containing two-phases, 
a and 13 

~ = cr~'f~ + o~f~ (la) 

g{ = s~f~ + g~f~ (lb) 

where cr~, o~ and cr~ are the flow stresses of bulk 
a-alloy, bulk [3-alloy and the a-13 phase mixture, re- 
spectively, s~, s~ and s~- are the total strains in bulk 
a-alloy, bulk [3-alloy and the a-13 phase mixture, re- 
spectively, andf i s  the volume fraction. Equation la is 
called the equal strain model from the assumption 
that both phases have the same total strain during the 
deformation process. Equation lb is called the equal 
stress model.because equal stress is assumed for both 
phases. The classical linear law of mixtures assumes 
implicitly that there is no interaction between two 
constituent phases. However, these assumptions are 
too simplistic, and moreover, the flow properties of 
most particulate two-phase composites do not follow 
this linear law of mixtures. 
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A more general but still empirical law of mixtures 
relating to the average stresses and strains in each 
phase was suggested by Tamura et al. [-2]. For a com- 
posite consisting of two phases, a and 13, under 
uniaxial loading, the stress and strain can be expressed 
by the following equations 

cy~ = 6~f~ + 6~f~ (2a) 

~ = ~ f ~  + ~ f ~  (2b) 

where 6 and g are the average values, respectively, of 
the directional components of stress and strain paral- 
lel to the loading direction of the applied stress aver- 
aged on the planes normal to the loading direction for 
stress or along the lines parallel to the loading direc- 
tion for strain [3]. Equation 2a and b have been called 
the modified law of mixtures, because the relevant 
average stresses and strains of each phase are in situ 

values. In the modified law of mixtures, the interaction 
effects are incorporated into the stress and strain 
values associated with each phase. The empirical use 
of the modified law of mixtures for stress and/or strain 
has shown good agreement with experiments [3-6], 
modelling [7-9] and finite element analysis [10, 11]. 
However, it has been shown recently by Gurland and 
Cho [12, 13] that the modified law of mixtures can be 
justified only at small strains. 

In this paper, a generalized law of mixtures is 
developed for the prediction of various mechanical 
properties of two-phase composites with any volume 
fraction, grain shape and phase distribution. The gen- 
eralized law of mixtures is then applied to two-phase 
composites to predict their mechanical properties. The 
predictions are verified by the experimental results in 
the corresponding composite systems. 
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2. Microstructural  characterizat ion 
Gurland [14] proposed in 1958 the topological para- 
meter, contiguity (denoted C), for the description of 
the extent of particle contact in dual-phase structures. 
Lee and Gurland I-9] defined in 1978 the concept of 
continuous volume and derived the mathematical ex- 
pression for it in terms of the contiguity and volume 
fraction. Based on these works, Fan [15] proposed the 
concepts of separation (denoted S), separated volume, 
degree of continuity and degree of separation. The 
definitions, expressions for measurements and calcu- 
lations under the assumption of random distribution 
of equiaxed grains are summarized in Table I. The 
combination of such topological parameters can offer 
a full description of the phase distribution in the 
dual-phase structure. All these parameters can be 
measured experimentally in a microstructure with any 
grain size, grain shape and phase distribution using 

standard metallographic methods [16], but they can 
only be mathematically calculated from the known 
grain size and volume fraction under the assumption 
of equiaxed grain and random distribution. 

According to the topological transformation 
1-15, 17], a dual-phase microstructure with any grain 
size, grain shape and phase distribution, as schemat- 
ically illustrated in Fig. la, can be topologically trans- 
formed into a three-microstructural-element body (the 
3-E body), which is schematically illustrated in 
Fig. lb. Element I (EI) consists only of ~-grains with 
an average grain size of d~ and therefore contains only 
0~-grain boundaries. The volume fraction of EI is de- 
fined by the continuous volume of e-phase f~r Ele- 
ment II (Eli) consists only of 13-grains with an average 
grain size of d~, and with a volume fraction off~. Only 
13-grain boundaries exist in EII; Element III (EIII) 
consists of the long-range ~-13 chains, hence, there are 

T A B L E  I Summary of the topological parameters (from 15) 

Parameter  Definition Measurement Calculation 

2S~ ~, 2N[  ~ f~ap L R  
C~ C~ = ~ a- ~ P  C~ = - C~ 

~ov - ~v 2 N ~  + N~P 

2S~ p 2N~ ~ 

cp cp = 2s~P + s :  cp = 2NIP + N~P cp 

& 
s :  N;P 

S= = 2S~ "~ + S~, p S~ - 2N~ ~ + N [  p 
S~ 

s~p N~P 
Sp Sp 2S~v p + S ~  p Sp 2N~ p + N ~  'p Sp 

x v 2  
Lo Lo = Lo = G L  Lo 

V 

Z VI~ p 
fpo fpo = f,o = cpfp fpo 

V 

xv~] p 
f , ,  f , , - -  f , , =  S~f, f , ,  

V 

x v ,~ p 
f~, ~ ,  = fp,  = Spfp f~, 

V 

eo eo =Ao + f~o Fo = G L  + Gf~ Fo 

F~ F, =L~ + G  G = & L  + spa G 

Lap +Ad~ LR +f~ 

f~d~ fp 

Ldp + fpd= f~R + f~ 

f=dp + f~d~, f~R + fo 

f~dp f~R 

Ld~ + f~d~ - L R  + ~ 

f? dp f~ R 

f~dp + f~d~ L R  + fp 

Ldp +Mo LR +f~ 

L f#~ L:~R 
Ldp +Ad, LR +A 

Lf#p LA 
Ldp + fpd= LR + fp 

fddp +f~2d~ f2R +f: 
Lap + M~ LR % 

f~f~(d= + dp) f=f~(1 + R) 

Ldp +f~d= f~R +f~ 

Notes: 
d~, d~: grain size of a-phase and J3-phase 
f~,fp: volume fraction of ct-phase and [3-phase 
C~, Cp: contiguity of ct-phase and 13-phase 
S~, S~: separation of or-phase and ~-phase 
f~c, fpo: continuous volume fractions of s-phase and 13-phase 
f~,fp~: separated volume fraction of 0~-phase and IB-phase 
Fc: degree of continuity of an ~-13 phase mixture 
F,: degree of separation of an ~-13 phase mixture 
S~:  surface area between or-grains per unit volume 
S~vP: surface area between 13-grains per unit volume 
S~,~: surface area between ct- and 13-grains per unit volume 
S~ = S~ ~ + 2S~P: total s-grain boundary area per unit volume 
S~v = S~v p + 2S#:  total 13-grain boundary area per unit volume 
N~) and NIP: numbers of intercepts of 0c-~x interfaces and l~-13 interfaces between a random line of unit. length on a plane of polish 
N~'f: numbers of intercepts of ~-13 interfaces between a random line of unit length on a plane of polish 
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Figure 1 Schematic illustration of the topological transformation 
from (a) microstructure A to (b) microstructure B. This graph is just 
a schematic illustration of the topological transformation and does 
not represent any quantitative information such as the volume 
fraction, grain size and grain shape. The (isotropic) mechanical 
properties of microstructure A are represented by loading of the 
equivalent microstructure B in the aligned direction. 

only phase boundaries in EIII. The volume fraction of 
EIII is defined by the degree of separation, Fs, and its 
grain size is defined by the volume fraction weighted- 
average grain size, ~i1, i.e. 

diii ~---- d=f=,,, + d~f[~III (3) 

wheref~.l andf~m are the volume fractions of a-phase 
and J3-phase in EIII, respectively. It is obvious that 
both geometrical and topological parameters in 
mierostructures A (Fig. la) and B (Fig. lb) are ident- 
ical along the aligned direction. Furthermore, micro- 
structures A and B are mechanically equivalent along 
the aligned direction of B [15, 17, 18]. As a con- 
sequence of this topological transformation, the 
determination of the mechanical properties of a com- 
plicated dual-phase microstructure can be replaced by 
an analysis of the simpler but equivalent microstruc- 
ture with three well-defined microstructural elements. 

It is necessary to emphasize the following points: 
(i) Fig. 1 is just a schematic  illustration of the topologi- 
cal transformation, and does not represent any quant- 
itative information such as the volume fraction, grain 
size and grain shape; (ii) it is important to make a clear 
distinction between the different volume fractions, f=, 
f~m andf~c represent volume fractions of the a-phase in 
the composite, of the a-phase in element III and of the 
continuous a-phase in the 3-E body, respectively; 
(iii) microstructure B is mechanically equivalent to 
microstructure A only in the aligned direction 
(Fig. lb), which means that the mechanical properties 
of microstructure A (which is isotropic) can be repres- 
ented by those of microstructure B (which is aniso- 
tropic) in the aligned direction. 

3.  T h e  t o t a l  s t r a i n  d i s t r i b u t i o n  a m o n g  
t h e  t h r e e  m i c r o s t r u c t u r a l  e l e m e n t s  

Consider the total strain distribution among the three 
microstructural elements in the 3-E body at a certain 
point during the deformation process of an a-J3 com- 
posite when a uniaxial stress oA3 is applied along the 
aligned direction (see Fig. 2). In the first ease, the 
elastic constants of all three elements are assumed to 
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Figure 2 A schematic illustration of the 3-E body under the 
uniaxially applied stress ~]3. Also shown here are the microstruc- 
tural parameters and the various strains in each microstructural 
element. 

be equal. In other words, in this case we are dealing 
only with elastically homogeneous composites. 

Assume that a continuum body consists of two 
microstructural elements, i and j, which are parallelly 
aligned, and is subjected to a uniaxial tensile stress. 
According to Brown and Clarke [19] the mean inter- 
nal strain field in each element can be described by the 
following equations 

( ~ 1 3 )  i = ~ f 3 3 J ~ ( ~ -  ~ )  (4a) 

( g 1 3 )  j = 'Ya3f/(l~ -- 8~) (4b) 

where (e~3)i  and (e~3)j  are the mean internal stres- 
ses along the tensile direction in the elements i and j, 
'Y33 is the strain accommodation tensor [19] along the 
tensile direction, 81, and e~ are the plastic strains in 
elements i and j, andf~ and fj are the volume fractions 
of elements i and j. 

The total strain in elements i and j is the sum of 
elastic strain, BE, the plastic strain, 8p, and the mean 
internal strain, (8~33), as shown in Fig. 2, i.e. 

= S~ -'1- 8~ + "~33fj(g j - -  S/p) (5a) 
�9 . . ][ 

= g~ -}- F_. j --1- ~ /33f (s~ - -  8 j )  (5b) 
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The total strain difference between elements i and j is 

+ Y33(Jj +f)(g~ - ~ )  = 0 (6) 

becausef~ +f~ = 1, Y33 = 1 and 6~ = 6~. 
Thus 

g~ = 64 (7) 

As a consequence of the above derivation, it is easy to 
obtain the following relation for the 3-E body 

6~ = ~ = ~ = ~ (8) 

where 6~, 6~, 6~ and e~ denote the total strain in 
Element I, II, III and the whole composite (the 3-E 
body), respectively. 

Equation 10 is therefore the general equation describ- 
ing the in situ stress distribution among the three 
microstructural elements. Equation 10 has a similar 
form to the law of mixtures. 

4.2. The partition of the in situ plastic 
strain among the three microstructural 
elements in two-ductile-phase alloys 

At a certain point of plastic deformation of two- 
ductile-phase alloys, the in situ plastic strain in each 
mierostructural element is ~ in EI, 6~ in EII and ~ in 
EIII. Assuming that the 3-E body undergoes a further 
plastic deformation, ~8~,, the plastic strain in each 
element at this point will be 6~ + 66~, in EI, 6~ + 88~ in 
EII and 6~ ~ + 8 ~  in EIII. According to Fan [151 we 
have the following equation 

B 

{ [f~(g~ + 86~) + V,(e~, ~ + 8~, ~) -- (f~ + F,)(e~, + 66~,)3L08@ 

• + If=(6; + sea) + Fs(6~" + 66;~) - (L0 + F,)(~ + 8 ~ ) 1 f , 0 ~  I (11) 
+ [ f = ( ~  + 866) +f ,0(4  + 84) - (L0 +f~0)(6~ ~ + 86~)1F~86~ ~ 

It is not possible at the moment to derive Equation 
8 theoretically in the case of inhomogeneous com- 
posites (where the elastic constants of the constituent 
phases are different). However, Equation 8 will follow 
from the strain compatibility requirement if the com- 
posite is free from debonding [201. Therefore, Equa- 
tion 8 should be applicable to both homogeneous and 
inhomogeneous composites. Furthermore, Equation 
8 is a direct consequence of the various interactions in 
the whole 3-E body [151. 

Equation 8 indicates that in the cases of both homo- 
geneous and inhomogeneous composites the total 
strains along the tensile direction in the three paralleUy 
aligned microstructural elements are the same and 
equal to the total strain in the whole composite (the 
3-E body), if a uniaxial stress is applied along the 
aligned direction of the three microstructural ele- 
ments. 

4. The generalized law of mixtures 
4.1. The in situ stress distribution among 

the three microstructural elements 
At a certain deformation point during the deformation 
process of an ~-[3 composite, the in situ total strain in 
each microstructural element is ~} in EI, ~ in EII and 
g~ ~ in EIII. Assuming that the 3-E body undergoes 
a further deformation, 86~, under the applied stress, 
the plastic strain in each element at this point will be 
6~ + 66} in EI, 6~ + ~6~ in EII and ~ + 8 ~  in EIII. 
The strain increment must satisfy the virtual work 
principle. Hence 

where o =, cr ~, o =~ and cr ~ denote the in situ stresses of 
Element I, II, III and the whole composite, respect- 
ively. Combining Equations 8 and 9, one obtains 

o ~ = o~f~0 + cr~f~ + o~Fs (t0) 

where B = (5 - 4v)E/4(1 - v 2 ) ,  E is Young's modulus 
and v is Poisson's ratio. Equation 11 describes the 
plastic strain distribution among the three microstruc- 
tural elements of the whole 3-E body. However, the 
contribution from the terms in the curved brackets 
multiplied by B / ~ 3  is negligibly small compared with 
that from the other terms [15]. Therefore, to a very 
good approximation, the plastic strain distribution 
among the three microstructural elements can be de- 
scribed by the following equation 

86~ = LoSe~ +f~r +F~84 ~ (12) 

Equation 12 has a similar form to the law of mixtures. 

4.3. Young's modulus of an ~-13 composite 
If the deformation of an s-13 composite is confined 
within the elastic limit, the in situ stress distribution in 
the three microstructural elements is still described by 
Equation 10. Dividing both sides of Equation 10 by 
the in situ elastic strain in the whole 3-E body, ~ ,  and 
noting that 6~ = e~ = ~ = ~ ,  we get the following 
equation 

(13) 

Then, from Hook's law we have 

E c = E~f~c + E~f~c + E~Fs  (14) 

where E ~, E ~, E ~, and E c are the Young's moduli of 
Elements I, II, III and the whole 3-E body, respect- 
ively. Equation 14 relates the Young's modulus of an 
s-I] composite to the Young's moduli of the three 
microstruetural elements. 
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4.4. The yield strength of 
two-ducti le-phase alloys 

Fan et al. [18] have derived the following equation for 
two-ductile-phase alloys 

oy = CYyf=c + ~f[3c + Oy[3 Fs (15) 

where Cyy, o~, o~[3 and Oy denote the yield strength of 
Elements I, II, II1 and of the whole composite. Equa- 
tion 15 is the general expression for the yield strength 
of two-ductile-phase alloys. By applying the Hall- 
Petch relation [21, 2 2 ] t o  each microstructural ele- 
ment in Equation 15, we obtain 

c k~d - l / 2 ) f [  = (o ~ + kyd21 /2 )Lc  + (Oy[3 + y [3 [3r (3"y y 

+ (ay~" + k;[3d~'/2)Fs (16) 

where o~ is the friction stress and ky is the Hall-Petch 
coefficient. 

Furthermore, expressions for cry c and ky in two- 
ductile-phase alloys can also be derived as shown 
elsewhere [18] 

Cry c = Oy~Lc + Cyy[3f~ c + Oy~[3r~ (17) 

k~, = k;f=c + k~f[3~ + ky~F~ (18) 

Again, o~, Cry c and k~ all have a similar form to the law 
of mixtures. 

4.5. The f low stress of an r compos i t e  
In the case of plastic deformation of an r composite, 
the following equation can be obtained from Equation 
10 

~ = ~f~c + c~f[3c + o~Fs (19) 

where o~, of~, cr~ ~ and o~ are the in situ flow stresses in 
Elements I, II, III and of the whole 3-E body, respect- 
ively. Equation 19 also has a similar form to the law of 
mixtures. 

4.6. The generalized law of mixtures 
The mechanical properties of an a-13 composite are 
here denoted by W, where pc represents the Young's 
modulus, E c, the yield strength, o~, the flow stress, o~, 
the friction stress, OyC, and the overall Hall-Petch 
coefficient, ky. If the mechanical properties of El, EII 
and EIII in the 3-E body are denoted P~, P[3 and P~[3, 
respectively, pc can then be expressed as the sum of 
the relative contributions, from each microstructural 
element, according to the previous analysis, i.e. 

pc  = P~f~c + e[3f[3c + P~[3F~ (20) 

Equation 20 is called here the generalized law of 
mixtures, and can be used to predict a number of 
mechanical properties of two-phase composites with 
any volume fraction, grain shape and phase distribu- 
tion. 

Now, let us apply the concept of directional conti- 
guity [15] to a composite reinforced with perfectly 
aligned continuous fibres along the aligned direction. 
In this case, Fs = 0,f~c =f~ andf[3c =f[3 and the gener- 
alized law of mixtures (Equation 20) reduces to the 

classical linear law of mixtures, i.e. 

pc  = p~f~ + p[3f[3 (21) 

Therefore, the classical linear law of mixtures is a spe- 
cific case of the generalized law of mixtures. However, 
in contrast to the classical linear law of mixtures 
(Equation 21), the generalized law of mixtures (Equa- 
tion 20): (i) can take into account the various interac- 
tions, especially the interactions between the particles 
of the same phase in a random phase mixture [15]; 
(ii) is applicable not only to continuous fibre com- 
posites but also to particulate systems with any vol- 
ume fraction, grain shape and phase distribution; (iii) 
can be derived from continuum mechanics; (iv) can be 
applied to predict a variety of mechanical properties, 
such as Young's modulus, yield strength, flow stress, 
the overall friction stress, %% and the overall 
Hall-Petch coefficient, k~. 

5. Applications of the generalized 
law of mixtures 

5.1. Prediction of Young's modulus 
of continuous fibre and 
particulate composites 

Below, the generalized law of mixtures will be applied 
to the continuous tungsten fibre-reinforced copper 
matrix composites, the Co/WCp, the A1/SiCp com- 
posites and glass-filled epoxy composites to predict 
their Young's moduli. The theoretical predictions will 
be compared with experimental data drawn from the 
literature and with the predictions of other theories. 

The Young's moduli of copper and tungsten were 
calculated from the experimental results of Foreman 
[23] (IXcu = 42 GPa and Vcu = 0.45) and Lowrie and 
Gonas [24] (IXw = 162 GPa and Vw = 0.28), respect- 
ively. The elastic constants and Poisson's ratios of 
cobalt and WC were taken from the experimental 
results of Paul [25] and Doi et al. [26]. The mechan- 
ical properties of aluminium and SiC were adopted 
from the works of Withers [27] and Davis [28]. The 
elastic constants and Poisson's ratios of epoxy and 
glass beads used for this calculation were the same as 
those used by Ahmed and Jones [29]. The mechanical 
properties of the constituent phases in the four com- 
posite systems concerned here are summarized in 
Table II. 

In the case of continuous tungsten fibre-reinforced 
copper composite, Fs = 0, f~c =f~ and f[3c = f  r3. The 

T A B L E I I The mechanical properties of constituent phases used 
for prediction of Young's moduli 

System Phase G (GPa) E (GPa) v 

Cu/Wf [23, 24] Cu 42 121.8 0.45 
W 162 414.7 0.28 

Co/WCp [25, 26] Co 80.2 210.0 0.31 
WC 293.1 700.0 0.194 

A1/SiCp [-27, 28] A1 26.1 70.0 0.34 
SiC 189.0 420.7 0.19 

Glass-filled Glass beads 28.7 70.0 0.22 
epoxy [29] Epoxy 1.33 3.7 0.39 

145 



predicted Young's moduli for this system are com- 
pared in Fig. 3 with the experimental results of 
McDanels et al. [30]. Fig. 3 shows that there is a very 
good agreement between the predictions by the gener- 
alized law of mixtures and the experimental results 
[ 30 ] .  

In many investigations of the mechanical properties 
of two-phase materials, the Co/WCp composites have 
been used as a model system for which numerous 
experimentally measured E values are available in the 
literature. A further reason for the choice of this sys- 
tem is that the topological parameters required for the 
calculation can be found in the experimental work of 
Fischmeister and Exner [31] and Lee and Gurland 
[9]. Their contiguity data for the WC phase (denoted 
as the 13-phase) in Co-WC composites can be ex- 
pressed as 

C~ = f3  (22) 

Here it is assumed that the contiguity of cobalt (de- 
noted the m-phase) follows the same trend of variation 
with the volume fraction of the cobalt phase, i.e. 

C= = f• (23) 

The other required parameters can be calculated from 
the following equations [15] 

L c  = 

= f 2  (24) 

= c , f ,  

= ( 2 5 )  

F, = 1 - - f = c - f ~  (26) 

L-L�9 
f=m - (27) 

v, 

f inn - f l} - - f~  (28) 

In general, the continuous volumes of ~- and 13-phases 
are assumed to be given by the following equations 

f~r = fff  (29) 

f~r --  f~ (30) 
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Figure 3 A comparison of ( ) the predicted Young's moduli of 
continuous Cu-W composites and (| the experimental results of 
McDanels et al. [30]. 

1 4 6  

The Young's moduli of the Co-WCp system calculated 
by the generalized law of mixtures are shown in 
Fig. 4 as a function of the volume fraction of the WC 
phase. Also shown in Fig. 4 are the experimental data 
from a number of investigators [26, 32-35], the results 
from finite element method (FEM) calculations [36] 
and the theoretical predictions by Hashin-Shtrikman 
(H-S) lower and upper bounds [32]. Fig. 5 shows the 
high volume fraction region in Fig. 4. In Figs 4 and 
5 the theoretical predictions of the present approach 
are well within the H-S  lower and upper bounds. 
Furthermore, there is a better agreement between the 
predictions by the generalized law of mixtures and the 
experimental results especially at high volume frac- 
tions of the WC phase (Fig. 5) than the theoretical 
predictions of the H-S bounds. 

In recent years there has been a great deal of interest 
in the A1/SiCp composites and experimental data on 
the Young's modulus is available. Therefore, it would 
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Figure 4 A comparison of the theoretically predicted Young's 
re�9 of the Co-WCp system by the present approach ( ) with 
the theoretical predictions by H-S upper (---) and lower (---) 
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be very interesting to apply the generalized law of 
mixtures to A1/SiCp composites. Because the topolo- 
gical parameters required for the calculation are not 
available for the A1/SiCp system, it will be assumed 
that, as in the Co-WC system, the continuous volumes 
of the ~- and 13-phases are represented by f~ and f 4  
respectively, i.e. m = n = 4 in Equations 29 and 30. 
The other required topological parameters can be 
calculated from Equations 26-28. 

A comparison of the Young's moduli of A1/SiCp 
composites is made in Fig. 6 from the theoretical 
predictions by the generalized law of mixtures, the 
H-S bounds and the recently reported experimental 
results [37-42]. The small variations in the Young's 
moduli of the different unreinforced aluminium alloys 
have not been considered in this comparison. Fig. 6 
indicates that the theoretical predictions by the gener- 
alized law of mixtures are in a better agreement with 
the experimental results than those by H-S bounds. 

Another group of composites of commercial inter- 
ests are the polymer matrix composites, where the 
stiffness ratio of the two constituent phases is norm- 
ally large. In a glass-filled epoxy composite E#/E~ can 
be as large as 20. Therefore, from both the theoretical 
and practical point of view, it is interesting to apply 
the generalized law of mixtures to this system. The 
required topological parameters are assumed to fol- 
low Equatio.ns 24-28. 

The predicted Young's moduli for graded glass 
beads-filled epoxy composites as a function of volume 
fraction of glass beads are shown in Fig. 7 and com- 
pared with the experimental data reported elsewhere 
[43, 44], as well as with the theoretical predictions 
by the H-S bounds [323. Fig. 7 indicates that the H-S 
lower bound is closer to the experimental data than 
th e predictions by the present approach under the 
above microstructural condition. However, as we 
know, in the graded glass bead-filled epoxy system the 
filler normally tends to be much more separated than 
the matrix. Thus, if the continuous volume of the glass 
beads is assumed to be 0 (f~c = 0) and that of the 
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Figure 6 A comParison at low volume fraction of SiC particles of 
the theoretically predicted Young's moduli of A1/SiCp composites 
by the present approach ( - - - - - - ) ,  the theoretical predictions by 
H-S'upper ( - - - )  and lower (---) bounds [32] and experimental 
results (73) [37], (~)  [38], (*) [39], (ES) [40], (0)  [41], (�9 [42]. 

0t-phase to befit  =f3(m = 3), the calculated Young's 
moduli of this system are much closer to the experi- 
mental data. 

Furthermore, as shown in Figs 4-7, the Young's 
moduli of particulate composites predicted by the 
generalized law of mixtures are close to the H-S lower 
bound at low volume fractions and approaching the 
H-S upper bound at high volume fraction. This is an 
interesting result, because one would intuitively expect 
the lower bound to be more closely followed at low 
volume fractions, whereas the stiffness could approach 
the upper bound at high volume fractions, as pointed 
out by Withers et al. [45]. 

5.2. Prediction of the yield strength and 
f l ow  stress of two-phase  composi tes 

Equations 15 and 19 have been applied to copper- 
matrix composites reinforced with continuous tung- 
sten fibres to predict the yield strength and the flow 
stress of this system. The calculated yield strengths 
and flow stresses are shown in Figs 8 and 9, 
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Figure 7 A comparison at low volume fraction of glass beads of the 
theoretically predicted Young's moduli of glass-filled epoxy com- 
posites by the present approach with (A) m = n = 4 and (A) 
f13r = 0 and m = 3, the theoretical predictions by H-S upper (~1,) 
and lower (O) bounds [30] and experimental results (rq, �9 �9 A) 
[43], ( � 9  [44]. 
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Figure 8 A comparison between the predicted yield strengths (--) of 
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et al. [-30]. 

147 



respectively, and compared with the corresponding 
experimental results of McDanels et  al. [30]. There is 
a very good agreement between the predictions and 
the experimental results. 

Fan [15] has developed an approach for the calcu- 
lation of the true stress-true strain curve of the EIII 
body in two-ductile-phase alloys. If the yield strength 
is defined as the flow stress at 0.2% plastic strain, the 
yield strength of EIII can be evaluated from the cal- 
culated flow curve of the EIII body. Therefore, Equa- 
tion 15 can be applied to predict the yield strength 
of two-ductile-phase alloys. The predicted yield 
strengths of 0~-p Ti-Mn alloys are presented in Fig. 10 
and compared with the predictions of the classical 
linear law of mixtures and the experimental results of 
Margolin and co-workers [46, 47]. Fig. 10 indicates 
that there is good agreement between the predictions 
by the generalized law of mixtures and the experi- 
mental results. 

The same approach [15] has been applied to calcu- 
late the flow curve of the EIII body in a ferrite-mar- 

tensite dual-phase steel with 50% martensite phase. 
The calculated results are presented in Fig. 11 together 
with the prescribed flow curves of the ferrite-phase 
(EI) and martensite phase (EII) [13]. From these the 
flow curve of this dual-phase steel can be constructed 
according to Equation 19, and is shown in Fig. 11. The 
topological parameters used in this calculation are 
from the experimental data of Uggowitzer and Stuwe 
[48]. Similar results for two Ti-Mn alloys with 82.3% 
and 16.4% ~-phase are presented in Fig. 12 and com- 
pared with the experimefltal results of Ankem and 
Margolin [46]. Figs 11 and 12 indicate that there is 
a good agreement between the predictions by the 
generalized law of mixtures and the experimental 
results. 

5.3�9 Predictions of the HalI-Petch 
constants for Cu-Zn alloys 

Fan et  al. [18] have extended the Hall-Petch relation 
[21,22] developed originally for the single-phase 
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Figure 9 A comparison between the predicted flow curves ( - - - )  of 
Cu-W composite and the experimental results ( - - )  of McDanels 
et al. [30]. The given data indicate the volume fractions of tungsten 
fibres. 
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Figure l l  A comparison between the predicted (�9 flow curve of 
a ferrite-martensite dual-phase steel with 50% martensite phase 
with the corresponding experimental (0) results of Uggowitzer and 
Stuwe [48]. (A) EI, (I~) EII, (V q) EIII. 
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TABLE III  Summary of the Hall-Petch constants in the ct-13 
Cu-Zn system from [18] 

Element cr~(MPa) ky (MPa mm 1/2) 

EI 35 11.4 
Eli 75 11.9 
EIII ~o~f + y J rz ~,13j  p .ofo 14.5 
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Figure 13 A comparison between the predicted 

o~ r and k~ using the generalized law of mixtures are in 
good agreement with the data evaluated by Fan et al. 

[18] from the experimental results of Werner and 
Stuwe [49]. 

6. Conclusion 
A generalized law of mixtures has been derived theor- 
etically for the prediction of the mechanical properties 
of two-phase composites. In contrast to the classical 
linear law of mixtures, which is empirical and requires 
some explicit assumptions, the generalized law of mix- 
tures can be derived from continuum mechanics. It 
has been shown that the classical linear law of mix- 
tures is a specific case of the generalized law of mix- 
tures. The generalized law of mixtures is applicable to 
two-phase composites with any volume fraction, grain 
shape and phase distribution and can predict a variety 
of mechanical properties. There is an excellent agree- 
ment between the predictions of the generalized law of 
mixtures and the experimental results drawn from the 
literature. 
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alloys to two-ductile-phase alloys, and they have ap- 
plied the extended Hall-Petch relation to 0~-13 Cu-Zn 
alloys, s-I] Ti-Mn alloys and ~-y Fe-Cr-Ni stainless 
steels. Their results for the HaU-Petch constants in the 
0t-13 Cu-Zn system are summarized in Table III. 

Using Equations 17 and 18 together with the para- 
meters in Table III, as well as the topological para- 
meters from Werner and Stuwe [49], the overall 
friction stresses, ~c ,  and the overall Hall-Petch co- 
efficients, ky, can be calculated. These results are 
shown in Figs 13 and 14 for cry c and ky, respectively. 
Figs 13 and 14 show that the theoretical predictions of 

Figure 14 A comparison between the theoretical predictions ( ) 
of the overall Hall-Petch coefficients in Cu-Zn alloys with the 
results (q)) evaluated by Fan et al. [18] from the experimental data 
of Werner and Stuwe [49]. 
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